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LETTER TO THE EDITOR

Further results of enumeration of directed animals on
two-dimensional lattices

Andrew Conwayt]
Department of Mathematics, University of Melbourne, Parkville 3052, Australia

Received 18 October 1994

Abstract. In a previous paper we gave enumerations and results of the enumeration of directed
animals of three different forms (sites, bonds, and bonds without loops) on a variety of two-
dimenstonal tattices. This letter adds results for site animals without loops, and gives an exact
solution for the sites (no loops) Kagomé lattice, which is actually a pair of directed self-avoiding
walks.

Two-dimensional directed animals are connected clusters, such that each occupied site is
either the unigque base site, or is one step in a preferred direction from some other site in
the animal. An analytic solution for the number of site animals on the square and triangular
lattices has been found (e.g. [2]), and proved in many ways (e.g. [3, 4]). In [1], seven other
lattices were investigated, as shown in figure 1, where the preferred direction is up and
to the right. Three types of animals were studied: site animals, bond animals, and bond
animals without loops. The latter are commonly called trees (e.g. [5]). In each case an
asymptotic growth in the number of animals of size n of the form n~'2u" was observed
and precise estimates of p were given for the three animal types on the nine lattices.

This analysis has been repeated for site animals without loops, and the results are given
in table 1. A site animal without loops is a directed site animal such that no occupied site
is in the preferred direction of more than one occupied site in the animal. For instance,
on the square lattice, an animal with four sites arranged in a square is illegal, as the site
furthest from the base site can be reached from both the site to the left and the site below.

An initial surprise comes from the fact that the number of site animals without loops on
the Kagomeé lattice does not behave in the same way as all the other 35 animals studied: the
number of animals appears to grow like " rather than the normal n~'/2u". On close inspec-
tion of the Iattice, the reason for this is clear. The only site that can have more than one site
emanating from it is the origin. Site types 1 and 2 (the numbers inside the circles in figure 1)
form loops immediately if both sites in the preferred directions are occupied; site types 0 are
a little more subtle: one of the possible output directions will be rendered illegal by the type-
0 site and its predecessor. Only the origin, with no predecessor is immune to this restriction.
Thus the problem reduces to two self-avoiding directed walks on the Kagomé lattice. This
structure cannot really be called a two-dimensional animal, so universality is not violated.

It is possible to find the connective constant analytically for this type of graph. It will
be identical to the connective constant for one self-avoiding directed walk on the Kagomé
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Strange hexagonal Strange octagonal Strange decagonal

Figure 1. The shapes of the nine lattices studied. The preferred direction is to the upper right.

Table 1. Summary of results for the nine lattices for site directed animals with no loops.

Lattice Terms  Connective constant

Square 40 271261 £5

Triangular 20 3.0772+5

Hexagonal 70 1.925788 £+ 10

Kagomé 31 M+ V5 =1618...

Dipentagonal 35 2641602 .
QOctagons and squares 70 1779 £ 1 R

Strange hexagonal 40 2.526673 £ 4 b

Strange octagonal 40 2378132

Strange decagonal 30 22728 10

lattice. Suppose t, is the number of single directed walks with # sites not including the
origin, and s, 5 is the number of self-avoiding walk pairs, where one has a sites and the other
has b sites, not including the origin. Then s, ¢ = #; and s, < #,%. The total number of
self-avoiding walk pairs is then S; = 3, ;. Sa.», Which is bounded 22, < S, < (n + 1)ty
Thus the connective constants are identical.

The value of this connective constant for single directed walks can be established.
Define A(x) as the generating function for walks starting from a type-2 site. By symmetry,
this will be the same as the generating function for walks starting from a I site. Then
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Figure 2. Graph of connective constants of three varieties of directed animals against the
connective constant for site animals for the nine lattices in figure 1.

A=14+x+xA-4x%4,s0

14 x
AsT—a =2

A little algebra gives 1, ~ [1(1 + +/5)]". Thus the connective constant p for directed site
(no loops) animals on the Kagomé lattice is %(1 + +/3). Note that 1, happens to be the
{(n + 2)th Fibonacci number.

A longer proof gives an exact generating function for these ‘animals’ on the Kagomé
lattice, and shows an asymptotic behaviour like u”. This proof is given in the appendix.

All other results in table 1 are obtained using the method of differential approximants
[6] as in [1]. Actual enumerations are not given for reasons of space; they can be obtained
from the author.

For ease of visvalization, a graph is given in figure 2 plotting the connective constants for
bond, bond (no loops) and site (no loops) directed animals against the connective constant
for site animals on the same lattice, using the data from [1] table 1. It is very smooth apart
from an irregularity for the Kagomé lattice. The latter is expected for the site (no loops)
case for reasons mentioned above. The irregularity in the bond animals case is probably
due to the site animals’ connective constant being artificially low for similar reasons; the
triangles are more combinatorially significant for animals based on bonds rather than sites.

I would like to thank A O Capell, Wyselaskie and Daniel Curdie for scholarships. I would
also like to thank Tony Guttrann for his advice and critical reading of this manuscript, and
Maylis Delest and Jean Penaud from LaBri at the Université de Bordeaux I for discussions
about algebraic languages.
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Appendix. Exact solution on the Kagomé lattice

This method uses constructive arguments directly with generating functions in a manner
similar to those arguments used in a proof via algebraic languages. For brevity I have used
the generating functions directly rather than formally showing the algebraic languages upon
which they are based. Herein, a generating function

Gx)=D gax" (Al
n=0

describes the number of objects g, with » sites, not including the base site which will be
specifically mentioned in the definition of G. Note that all the variables mentioned hereafter
will be functions of x unless specified otherwise, so the x subscript shall be dropped.

The problem is to count the number of directed site animals on the Kagomé lattice,
disallowing loops. Call this generating function B for base. Let it have a base site of type
0 (see any of the pictures drawn of the Kagomé lattice with numbers inside sites indicating
their ‘type’). Call the generating function starting from a type-1 site A. By symmetry,
the generating function from a type-2 site will also be A. Then this is a one-dimensional
problem: A =14 xA + x +x%A as before, so

1+ x
AT B2)

Define the generating functions Cup(n) to represent animals with a base consisting of
two sites, numbered @ and & in figure 1, in the diagonal perpendicular to the preferred
direction. n is the distance apart of the the two sites. with O being as close as possible, one
being the next to closest pair, etc. g is the lower right site.

By symmetry, C,{n) = Cxn(n). Also note that B = C3((}). We can then get a set of
equations governing growth:

Cra(n) = (1 + x)2(1 + 2x A) + x*Co () + x°Cp1(n) + 2°Ca(n) + x*Cra(n + 1)

n>0 (A3)
Cr(n) = (1 4+ x)%(1 + 2x A) + x2Cn(n) + x°Coy (1) + x3Cia(n + 1) + x*Cui(n)

n>0 (Ad)
Coy(n) = (1 + )21 + 22 A) + x2C1(m) + 2Cpi(n — D+ x*Coan — D+ x*Coy(n = 1)

n2l (A5)
Co1(0) = | + 2xA + x2C2(0) . (A6)

To see where (A3)-(AS) come from, take for instance the C;, case. The |-site can go
to no sites, a 2-site, an O-site, or the 0- and 1-sites. The 2-site has a similar set of four
choices. The 16 combinations are shown in table Al.

Table Al. The 16 possible results of extending C2 to the next diagonal. The column represents
where the right site poes to, the row represents what happens to the left site.

Goto — 2 Q L1}

— l xA X A

1 xA X0y ka4 Xy
0 X xZ4 ' A
02 x4 ffcm FA 0
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Equations (A3) and (A4) can be simplified by defining ¢ = (I + x)%(1 + 2xA),
E(n) = Ciz{n), F(n) = Co(n), @ = 223(1 —x2 —xH7!, @ = ¢(1 + @), B = x* + x>,
y = x* + @x® and @ = 1 4 2xA. Then with a little algebra, Ci1(n) = Cy(n) can be
eliminated, leaving

En)=0+8F(n)+yEr+1) 0 (A7)
Fnmy=®+BEM)+yF(n—1) 1 (AR)
F(0) =8 +x2E(0). (A9)

Note that with the boundary conditions that no negative powers of x are allowed to
appear in either E{n) or F({n), this is sufficient information to calculate any of the above
generating functions to an arbitrary power of x, by noticing that all recursion (on the right-
hand side) has a factor in front of it that is at least O(x?). This boundary condition will be
used later in the actual solution.

Alternatively, given F(0) and E(0), one could use the above equations to solve for
all F(n) and E(n). Define ¥ = ®/(1 — 8 — y), and define F(n) = ¥ + f(n), and
E(n) = W+ e(n). Then a little algebra transforms (A7) and (A3) into the homogenous pair

e(n) = Bf(n) + ye(n+1) nzo0 (A1)
f)=Be(n) +yflin-1) nzl. (All)
These are now two homogenous equations, solvable by a linear combination of linearly
independent solutions. There should be exactly two solutions, as there are exactly two free
variables (F(0) and E(0)} in the inhomogenous case (equations (A7) and (AB)).
Trying a solution of the form e(n) = A" and f(n) = Ce(n), substituted into (A10) and
(All) gives
yal—(1 =2+ yHr+y =0. (A12)

This has two solutions, which means that all the possible solutions are of this form. One of
these solutions has a term O(y~"), and is thus disallowed by the boundary condition that
E(n) and F(n) have no negative powers of x. Thus there is only one solution, given by

2y
x=_—_—p+ — (A13)
C= 1_’3” (Al4)

where p =1 — g2+ y%
Then we can use this solution to get the solution to (A7) and (A8)

En)=Vv+ M)\ nz20 (Al5)
Fn) =04+ MC)M nz0. (Al6)
Using the second boundary condition (equation (A9)) we can solve for M:
6 — W+ x*W
M=— Al7
C —x? @17

This means we can get a final expression for B, the generating function desired in the
first place as

B = F(0) =W +MC. (A18)

Note that in the limit n — oo, E{00) = F(oc) = ¥ = A?, which is as expected as it
represents two independent single directed walks. This provides a check on the algebra.
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This was checked by performing a series expansion of the above result, giving a result
that agreed with the geometrical enumeration

B=1+2x+5x2+10x>+20x* +36x° +66x% + 118x7 +210x% + 364 x* + 633 x'°
+1088x' 4+ 1869x'2+3176x'3 + 5402 +9126x"° + 1541926
+25900x'7 + 43523 %' + 72822 x"% + 121868 x%° + 203204 2!
+338905 x2 4 563568 x% + 937321 x%* + 1555042 1% + 2580287 £ %
+4272438x27 + 7075274 2% + 11 695436 x% + 19335016 20
+31914 198 x¥ + 52683 124 x¥ + 86846826 x> 4- 143 179288 x>
+235761 004 x3° + 388 242544 x36 + 638643 148 x*7 + O(x)*®

An analysis of this around the critical point (+5 — 1)/2 gives an expansion of
C(x — x2)~' 4 O(1), which indicates a growth like n%4". A closed form expansion for
the generating function B or even for the constant C is exceedingly messy and is thus not
included here, though it can be easily obtained through the previous argument,
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