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LElTER TO THE EDITOR 

Further results of enumeration of directed animals on 
two-dimensional lattices 

Andrew Conwaytt 
Department of Mathematics, University of Melbourne, P-ille 3052, Australia 

Received 18 October 1994 

Abstract In a previous paper we gave enumerations and results of the enumeration of directed 
animals of three different forms (sites, bonds, and bonds without loops) on a variety of hvo- 
dimensional lattices. This letter adds results for site animals without loops, and gives an exact 
solution for the sites (no loops) Kagome lattice, which is actually a pair of directed self-avoiding 
walks. 

Two-dimensional directed animals are connected clusters, such that each occupied site is 
either the unique base site, or is one step in a preferred direction from some other site in 
the animal. An analytic solution for the number of site animals on the square and triangular 
lattices has been found (e.g. [21). and proved in many ways (e.g. 13.41). In [l], seven other 
lattices were investigated, as shown in figure 1, where the preferred direction is up and 
to the right. Three types of animals were studied: site animals, bond animals, and bond 
animals without loops. The latter are commonly called trees (e.g. [5 ] ) .  In each case an 
asymptotic growth in the number of animals of size n of the form n-1/2p" was observed 
and precise estimates of p were given for the three animal types on the nine lattices. 

This analysis has been repeated for site animals without loops, and the results are given 
in table 1. A site animal without loops is a directed site animal such that no occupied site 
is in the preferred direction of more than one occupied site in the animal. For instance, 
on the square lattice, an animal with four sites arranged in a square is illegal, as the site 
furthest from the base site can be reached from both the site to the left and the site below. 

An initial surprise comes from the fact that the number of site animals without loops on 
the Kagom6 lattice does not behave in the same way as all the other 35 animals studied: the 
number ofanimals appears to grow like p" rather than the normal n-l /zp".  On close inspec- 
tion of the lattice, the reason for this is clear. The only site that can have more than one site 
emanating from it is the origin. Site types 1 and 2 (the numbers inside the circles in figure I )  
form loops immediately if both sites in the preferred directions are occupied; site types 0 are 
a little more subtle: one of the possible output directions will be rendered illegal by the type- 
0 site and its predecessor. Only the origin, with no predecessor is immune to this restriction. 
Thus the problem reduces to two self-avoiding directed walks on the Kagomk tattice. This 
structure cannot really be called a two-dimensional animal, so universality is not violated. 

It is possible to find the connective constant analytically for this type of graph. It will 
be identical to the connective constant for one self-avoiding directed walk on the Kagome 
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Squve lattice Triangular 

Strange hexagonal Strange octagonal Strange decagonal 

Figure 1. The shapes of the nine lartices studied. The preferred direction is to the uppcr right. 

Table 1. Summary of resulu for the nine lanices for site directed animals with no loops. 

Lattice Terms Connective constant 

square 40 2.71261 * 5  
Triangular 20 3.0772*5 
Hexagonal 70 1.925788 f IO 
 god 31 i ( l + 3 ) = 1 . 6 1 8  ... 
Dipentaganal 35 2.64160i2 
Octagons and squares 70 1 . 7 7 9 i I  
Strange hevagonal 40 2.526673 + 4  
S m g e  octagonal 40 2.37813 & 2 
S m g e  decagonal 30 23728 + 10 

lattice. Suppose r, is the number of single directed walks with n sites not including the 
origin, and is the number of self-avoiding walk pairs, where one has a sites and the other 
has b sites, not including the origin. Then s,,~ = t,, and S,,b < to$,. The total number of 
self-avoiding walk pairs is then S, = sa,,,. which is bounded U, < S, < (n + I )&.  
Thus the connective constants are identical. 

The value of this connective constant for single directed walks can be established. 
Define A ( x )  as the generating function for walks starting from a type-2 site. By symmetry, 
this will be the same as the generating function for walks starting from a 1 site. Then 
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Figure 2. Graph of connective mnstanls of three vaneties of directed animals against the 
connenive constant for site animals for the nine latiices in figure 1. 

A = I + x + X A + X ~ A ,  SO 

= f"X" 
1 + x  A =  

1 - x - x *  " 
A little algebra gives to N [{(I t &)I". Thus the connective constant p for directed site 
(no loops) animals on the Kagom6 lattice is +(I + &). Note that r, happens to be the 
(n + 2)th Fibonacci number. 

A longer proof gives an exact generating function for these 'animals' on the Kagomt 
lattice, and shows an asymptotic behaviour like p". This proof is given in the appendix. 

All other results in table 1 are obtained using the method of differential approximants 
[6] as in [l]. Actual enumerations are not given for reasons of space; they can be obtained 
from the author. 

For ease of visualization, a graph is given in figure 2 plotting the connective constants for 
bond, bond (no loops) and site (no loops) directed animals against the connective constant 
for site animals on the same lattice, using the data from [ I ]  table 1. It is very smooth apart 
from an irregularity for the Kagomt lattice. The latter is expected for the site (no loops) 
case for reasons mentioned above. The irregularity in the bond animals case is probably 
due to the site animals' connective constant being artificially low for similar reasons; the 
triangles are more combinatorially significant for animals based on bonds rather than sites. 

I would like to thank A 0 Capell, Wyselaskie and Daniel Curdie for scholarships. I would 
also like to thank Tony Gutbnann for his advice and critical reading of this manuscript, and 
Maylis Delest and Jean Penaud from LaBri at the Universit6 de Bordeaux I for discussions 
about algebraic languages. 
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Appendix. Exact solution on the Kagom6 lattice 

This method uses constructive arguments directly with generating functions in a manner 
similar to those arguments used in a proof via algebraic languages. For brevity I have used 
the generating functions directly rather than formally showing the algebraic languages upon 
which they are based. Herein, a generating function 

describes the number of objects g, with n sites, not including the base site which will be 
specifically mentioned in the definition of G .  Note that all the variables mentioned hereafter 
will be functions of x unless specified otherwise, so the x subscript shall be dropped. 

The problem is to count the number of directed site animals on the Kagomt lattice, 
disallowing loops. Call this generating function B for base. Let it have a base site of type 
0 (see any of the pictures drawn of the Kagomt lattice with numbers inside sites indicating 
their ‘type’). Call the generating function starting from a type-I site A. By symmetry, 
the generating function from a type-2 site will also be A .  Then this is a one-dimensional 
problem: A = 1 + x A  + x + x Z A  as before, so 

I + x  
I - x  - x Z ’  

A =  

Define the generating functions C&) to represent animals with a base consisting of 
two sites, numbered a and b in figure 1, in the diagonal perpendicular to the preferred 
direction. n is the distance apart of the the two sites. with 0 being as close as possible. one 
being the next to closest pair, etc. a is the lower right site. 

By symmetry, Clj(n) = C&). Also note that B = C2~(0). We can then get a set of 
equations governing growth: 

C12(n) = ( l+x)’(I  + 2 r A ) + ~ ~ C 2 1 ( n ) + x ~ C 1 1 ( n ) + x ~ C 2 ~ ( n ) + x ~ C i z ( n +  I )  
n > O  (A31 

Clt(n) = ( I  + x ) ~ ( I + ~ ~ A ) + ~ ~ C ~ ( ~ ) + X ~ C ~ I ( ~ ) + X ~ C I ~ ( ~ +  l)+x‘Clt(n) 

n > O  (A4) 
Cz j (n )=( I  + ~ ) ~ ( 1 + 2 r A ) + x ~ C l z ( n ) + x ~ C ~ , ( n -  I ) + x 3 C 2 2 ( n -  I ) + x * C ~ l ( n -  I )  

n > l  (A51 
C21(0) = I + 2 x A  + xzC12(O). (A6) 

To see where (A3)-(A5) come from. take for instance the Ct2 case. The I-site can go 
to no sites, a 2-site, an 0-site, or the 0- and I-sites. The 2-site has a similar set of four 
choices. The 16 combinations are shown in table Al. 

Table AI. The 16 possible results of extending Ct2 to the next diagOn3l. The column represents 
where lhe right site goes lo. lhe row represene what happens to the left site. 

Got0 - 2 0 01 

- I x A  x x2A 
1 x A  xZCx J’A X’CII 
0 x x 2 A  x’ x3A 
02 X’A x’C2z x 3 A  X‘CI~ 
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Equations (A3) and 054) can be simplified by defining q5 = ( I  + x)'(1 + 2xA) ,  
E(n)  = C&), F ( n )  = &(n), ct = 2x3(1 - xz - 0 = 4 ( 1  +a), 0 = x z  + a x 3 ,  
y = x4 + a x 3  and 0 = 1 + 2 x A .  Then with a little algebra, Cil(n) = Cz&) can be 
eliminated, leaving 

E ( n )  = Q + B F ( n )  + yE(n  + I )  (A7) 
F ( n )  = Q + B E ( n ) + y F ( n  - I )  n 2 1 (AS) 
F ( 0 ) = O + x Z E ( O ) .  (A9) 

n > 0 

Note that with the boundary conditions that no negative powers of x are allowed to 
appear in either E(n) or F(n) ,  this is sufficient information to calculate any of the above 
generating functions to an arbitrary power of x ,  by noticing that all recursion (on the right- 
hand side) has a factor in front of it that is at least O(x2).  This boundary condition will be 
used later in the actual solution. 

Alternatively, given F ( 0 )  and E(O), one could use the above equations to solve for 
all F ( n )  and E(n) .  Define Y = @/(I - B - y) .  and define F(n)  = Y + f ( n ) ,  and 
E(n)  = Y +e(n) .  Then a little algebra transforms (A7) and (AS) into the homogenous pair 

(AI01 
( A l l )  

e(n) = B f ( n )  + ye (n  + 1) 
f ( n )  = B e @ )  + y f ( n  - 1) 

n > 0 
n 2 1. 

These are now two homogenous equations, solvable by a linear combination of linearly 
independent solutions. There should be exactly two solutions, as there are exactly two free 
variables ( F ( 0 )  and E(0)) in the inhomogenous case (equations (A7) and (A8)). 

Trying a solution of the form e(n) = A" and f ( n )  = Ce(n),  substituted into (A10) and 
( A l l )  gives 

y A 2 -  ( I  - f 1 2 + y 2 ) A +  y = 0 .  (A121 
This has two solutions, which means that all the possible solutions are of this form. One of 
these solutions has a term O(y-') ,  and is thus disallowed by the boundary condition that 
E ( n )  and F ( n )  have no negative powers of x .  Thus there is only one solution, given by 

A =  2y ( A I 3  
P + V F = V  
1 - y A  C=- 

B 
,yhere p = 1 - @* + yz.  

Then we can use this solution to get the solution to (A7) and (A8) 

E ( n )  = Y + MA" n 2 O  (AIS) 
F(n)  = Y + MCh" n > O .  (A16) 

Using the second boundary condition (equation (AS)) we can solve for M: 
0 - \y + x = *  M =  

c-x2 ' 

This means we can get a final expression for B. the generating function desired in the 

B = F ( O ) = Q + M C .  (Al8) 

first place as 

Note that in the limit n + w, E ( m )  = F ( w )  = Y = A*, which is as expected as it 
represents two independent single directed walks. This provides a check on the algebra. 
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This was checked by performing a series expansion of the above result, giving a result 
that agreed with the geometrical enumeration 

5 = I + 2 x  + 5 x z  + 10x3+20x4+36xS + 6 6 x 6 +  1 1 8 ~ '  +210x8 +364x9+633x'0 
+lO88x" + 1 8 6 9 x t 2 + 3  1 7 6 ~ ' ~ + 5 4 0 2 ~ ' ~ + 9 9 2 6 x ~ ~ +  1 5 4 1 9 ~ ' ~  
$25 9 0 0 ~ "  + 43 523 x" + 72 8 2 2 ~ ' ~  + 121 868 xZo + 203 204 xz l  
+338905xu+563568xZ3+937321xZ4+ 1 5 5 5 0 4 2 ~ ~ ~  t 2 5 8 0 2 8 7 ~ ~ ~  
+4272438x2' t7075274xz8+ 11695436x2'+ 19335016x30 
t31914 1 9 8 ~ "  + 52683 124x3'+ 8 6 8 4 6 8 2 6 ~ ~ ~  + 143 1 7 9 2 8 8 ~ ~ ~  
+ 2 3 5 7 6 1 0 0 4 ~ ~ ~ f 3 8 8 2 4 2 5 4 4 ~ ~ ~ + 6 3 8 6 4 3 1 4 8 x ~ ' + O ( x ) ~ ~ ,  

An analysis of this around the critical point (A - 1)/2 gives an expansion of 
C(x - xc)-' + O(I), which indicates a growth like nOp". A closed form expansion for 
the generating function 5 or even for the constant C is exceedingly messy and is thus not 
included here, though it can be easily obtained through the previous argument, 
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